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ABSTRACT

Experiments with teams of human subjects in which they carry out realistic decision-making

tasks are difficult to design and control. There are many variables, each one with a wide range

of values. The use of detailed executable models in the design of experiments is perceived

as one feasible approach to address these issues. A process for the use of modeling and

simulation in the design of complex experiments that address command and control issues

is described; the approach is then generalized to address series of experiments. The current

theoretical and experimental research effort on Adaptive Architectures for Command and

Control (A2C2) is used to illustrate the approach. © 1999 John Wiley & Sons, Inc. Syst Eng 2:

62�68, 1999

1. INTRODUCTION

Adaptation is one mechanism that organisms use to

cope with change. The military establishment is under-

going drastic change in a way that is very similar to the

changes that have been occurring during the last decade

or so to industry. Globalization and information tech-

nology forced restructuring and changes in the operat-

ing procedures for many organizations; similarly,

uncertainty in requirements, rapidly changing technol-

ogy, and fundamental changes in the way forces are
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organized to execute diverse missions that fall short of

conventional war, are the reasons for reexamining or-

ganizational structures and for focusing on architec-

tures for command and control. Addressing the

problems at the architectural level, a level of abstraction

above the system design level, one suppresses the spe-

cific details of the changing technology and system

implementation. Furthermore, interoperability issues

are better solved first at the architectural level. Adaptive

architectures are a level of abstraction higher than ar-

chitectures, since an adaptive one subsumes many fixed

architectures.

The objective in approaches that attempt to cope

with change is to search for problem invariants�those

aspects of the problem that do not change while other

components do change. At the implementation level,

the standards profiled in the technical architecture view
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[C4ISR Architecture Framework, 1997] provide the

invariants: definitions of interfaces and message for-

mats. At the architecture level, the operational architec-

ture view provides the invariant: The systems

architecture can evolve while supporting the given un-

changed operational architecture. At the next level up,

the operational architecture view may change, while

still representing the same operational concept. The

operational concept can be instantiated in terms of a

task graph or several task graphs. An adaptive architec-

ture is one that can accommodate multiple task graphs

and multiple implementations of the same task graph.

Thus, adaptive architectures represent an even higher

level of abstraction.

The concept of the task graph is elaborated in the

second paper in this issue [Levchuk, Pattipati, and

Kleinman, 1999] and is exploited in the fourth paper

[Handley, Zaidi, and Levis, 1999]. In some earlier work,

Perdu and Levis [1998] considered one type of adapta-

tion as a morphing process. An organization maintains

its task graph, but reallocates the activities or functions

in which the task has been decomposed to the different

organization members in such a manner that, through a

sequence of incremental function transfers, the organi-

zation morphs from one form to a different one while

preserving functionality. Handley [1999] is considering

adaptation as a change in the task graph, a change that

preserves the operational concept but implements it in

the form of a different task graph where the component

functions may be different.

In conjunction with the development of a theory and

a design procedure for organization design and adapta-

tion, an experimental program has been undertaken at

the Naval Postgraduate School under the sponsorship

of the Office of Naval Research. The experimental

program involves a number of teams carrying out a

planning and execution task at the Joint Task Force

level. The teams play the scenario using different organ-

izational forms; they may start with one, and then they

are given the opportunity to switch to another one. This

is a complex experiment with multiple human subjects,

a complex and demanding scenario, and many oppor-

tunities for decision-making. To handle the complexi-

ties of the experimental program, modeling and

simulation have been used. The deliberate use of mod-

els has given rise to a procedure, called model driven

experimentation, that has been refined over a series of

five major experiments that build on each other. This

procedure is described in this article; the other three

articles in this issue address key technical aspects of the

procedure.

The lessons learned from the development and ap-

plication of model driven experimentation are believed

to be relevant to the design of the Advanced Warfighting
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Figure 1 Two tiered versus three tiered process for the

design of large-scale experiments.

Experiments (AWEs) that are being undertaken by the

Army, Navy, Air Force, and Marines, both at the service

level and in Joint (multiservice) environments. The

complexities of these experiments are immense. �The

key challenge [in these experiments] is to develop tac-

tics, techniques and procedures, and to evaluate ad-

vanced technologies that create or enhance future

warfighting capabilities.�1 The implication of this state-

ment that is applicable across the different AWEs is that

in these experiments new operational concepts for new

missions are being tested using essentially unchanged

forces (the humans) in new organizational forms sup-

plied with equipment with new capabilities. These large

experiments that involve many thousands of humans are

essentially live simulations (one run) within which fo-

cused hypotheses can be tested. At this time, a two-

tiered approach has been used for a variety of reasons:

short time line, limited resources. However, since a

spiral development process is being used for the design

and execution of these large scale experiment, it is

possible to introduce a three tiered approach that uses

model driven experimentation principles and proce-

dures in the middle tier, as shown in Figure 1.

Currently, an experiment is designed directly from

an operational concept. While this may save time, it

does reduce the probability that useful, reliable results

will be obtained from the experiment. On the other

hand, if the experiment is modeled first and then exe-

cuted in simulation mode, it is possible to determine

what data need to be collected and, more importantly,

the values that the experimental parameters need to be

set so that the desired phenomenon can be observed.

This aspect is discussed further in Handley, Zaidi, and

Levis [1999] in this issue.

In Section 2 of this article, the process for Model

Driven Experimentation is presented. In Section 3, is-

sues related to using the approach for large-scale experi-

ments, such as the AWEs, are outlined, and a

generalization of the approach is given.

From a U.S. Marine Corps Warfighting Lab statement.
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2. THE MODEL DRIVEN
EXPERIMENTATION PROCESS

There exist several model taxonomies. One that is use-

ful in this context is the categorization of models as

predictive, explanatory, or prescriptive [Casti, 1997].

Predictive models are those that predict future behavior

on the basis of system properties and current conditions.

Models in physics such as Newton�s laws or Maxwell�s

equations fall in this category. Explanatory models are

those that provide a framework in which past observa-

tions can be understood as part of an overall process.

Many economic models fall under this category. Fi-

nally, prescriptive models are those that offer an explicit

way by which one can intervene to change the behavior

of the system. Control theory models are typical exam-

ples.

In designing and conducting experiments, both pre-

dictive and prescriptive models are needed. Simulation

models can be either predictive or prescriptive, depend-

ing on the manner in which they are used. The typical

use of a simulation is in a predictive mode. A set of

scenarios (a set of initial conditions and of inputs) is

used to drive the model and the results are observed. To

the extent that some of the inputs can be isolated and

then manipulated in a controlled manner so that cause

and effect can be identified, then the model is used in a

prescriptive mode. In the model driven experimentation

process, two types of model variables or parameters are

varied in a controlled manner: those that are to be

manipulated during the experiment, the independent

variables, and those that set the conditions of the experi-

ments, the operating point of the experiment.

The use of models in the experimental process brings

with it all the usual concerns about model validity.

Specifically, the models to be used must pass five tests:

two of them technical tests and three that reflect the

relationship of the user with the model [Levis and Levis,

1978]. In colloquial terms, the validation or coherence

test addresses whether the model is a correct repre-

sentation of reality, whether it captures the key relation-

ships between variables, reflects correctly causes and

effects. On the other hand, the test of verification or

correspondence addresses whether the implementation

of the model is correct. The test of clarity relates to the

understandability of the model, to whether the reasons

why results are the way they are appear transparent to

the user. The fourth measure is a critical one: credibility.

Does the user believe the results? Is he willing to act on

them? Finally, the test of reliability can be thought of

as credibility over time. Has the model produced cred-

ible results over a variety of scenarios and situations

over time?

A second issue in using modeling and simulation for

experiments involving humans is that one cannot pre-

dict the decisions the humans will make. On the basis

of the operational concept and the constraints of the

experimental context, it is possible to establish the set

of alternative decisions. Consequently, one can run the

models over the set of decisions. This becomes a prob-

lem when there are many decision-makers, each one

with a wide choice of decisions. Fortunately, in the type

of scripted experiments of military operations consid-

ered here, this problem of dimensionality of the deci-

sion space is manageable.

Given that it is possible to build credible models that

represent the experimental situation, the question be-

comes how to use them effectively in the design and

conduct of experiments. The Model Driven Experimen-

tation process described in this section is one answer to

this problem. It is an answer that has proven effective

in the A2C2 program and shows promise for applica-

bility to the large scale AWEs.

Figure 2 The detailed model driven experimentation process used in the A2C2 program.



A detailed block diagram of the process is shown in

Figure 2. The first step is the establishment of the

context for the experiment, whether a current context or

a future one. In that context, a problem is posed in the

form of a mission to be accomplished, and an opera-

tional concept for the execution of the mission is pos-

tulated. Mission objectives are established: For

example, the context may be a joint operation for the

capture of an airfield in a hostile country with the

operational concept specifying an amphibious assault.

Alternatively, the context may be a multinational hu-

manitarian assistance/disaster relief operation in an is-

land in the Pacific Ocean where heavy smoke from

forest fires near the airport prevents the landing of large

transport aircraft. The context is then expressed in the

form of a scenario: a sequence of events (stimuli) that

occur in time and trigger responses from the experimen-

tal subjects.

The second step is the formulation of hypotheses to

be tested through the conduct of the experiment. Hy-

potheses can be formulated on the basis of theory, of

prior findings, or can be derived from empirical evi-

dence generated through computational procedures.

The latter approach, applied to organizational architec-

tures, is presented by Carley [1999] in this issue.

The third step is the design of the alternative organ-

izational architectures for the given scenario. Given the

scenario, a set of resources, and a set of objectives,

optimal organizational architectures are derived for the

given criteria. Alternative architectures are then derived

by changing the problem constraints (e.g., different

resources) or the objectives. The detailed algorithmic

process for the design of organizational architectures is

presented in Levchuk, Pattipati, and Kleinman [1999],

also in this issue.

Note that the algorithmic design is based on a static

formulation of the problem. The next step is then the

development of a preexperimental simulation model of

the experiment that can be executed using the given

scenario. By considering the decision sets of each deci-

sion-maker and the given architecture, the experiment

is simulated, and data are collected to determine

whether the hypothesis holds true or not. Actually, the

preexperimental simulations provide feedback to the

designers in Step 3 regarding the dynamic behavior of

the organizational architecture. They provide informa-

tion regarding the timing of the various events and the

tempo of operations that is needed, if the desired behav-

iors are to be observed. They also indicate whether the

data collection scheme is adequate for testing the hy-

potheses. This information is given to the designers of

the physical experiment to help them in fine tuning it.

The details of the process in the context of the A2C2
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program are presented in Handley, Zaidi, and Levis

[1999] also in this issue.

The cycle of design, model and test, redesign, re-

model and retest is repeated until sufficiently robust

alternatives for testing the hypotheses are obtained that

are also implementable in the laboratory experimental

setup. This represents a case of spiral development

using analytical and modeling and simulation tools.

The fifth step that actually occurs concurrently with

the third and fourth ones is the design of the actual

experiment using the available laboratory facilities and

the �wargaming� software. A pilot experiment is then

run to test the experimental setup. Data from that pilot

experiment are used to rerun the preexperimental

model, especially if the parameters used in the physical

experiment (e.g., the tempo of operations) are outside

the range used in the simulations. With this final fine-

tuning, the experiment is then executed, and data are

collected. The results are analyzed to determine

whether the hypotheses have been validated.

The detailed experimental data, such as the actual

times events occurred and the actual decisions made by

the human subjects, are then used to run the simulation

model again and to compare the predictions the model

is now making with the actual results. This postexperi-

mental modeling and simulation forms the basis of

model validation and leads to model improvements.

The improved model is then used in the next cycle of

experiments.

These feedback loops that are inherent in model

driven experimentation are shown schematically in Fig-

ure 3, where the detailed steps of Figure 2 have been

suppressed. Loop 1 deals primarily with the use of

simulation models to take into account the dynamic

behavior in the design procedure for determining alter-

native architectures. The second loop corrects for the

discrepancies between the actual experimental setup

and conditions and the assumed one in the design phase.

Loop 3, in turn, takes the results of the analysis of the

experimental data and uses them to improve the design

algorithms and the formulation of hypotheses.

Figure 3 The feedback loops of the model driven experi-

mentation process.
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Figure 4 Model of evolutionary development of series of experiments.

This is a complex process in which a diverse set of

scientists and engineers are involved. For its proper

execution, a technical manager is required that can

coordinate the set of activities and maintain the proper

balance among the various steps. Usually, experiments,

especially those involving human subjects, are re-

source-constrained and time-constrained. The avail-

ability of human subjects imposes tight constraints on

the execution. Consequently, the model driven experi-

mentation process must be managed carefully to ensure

Figure 5 The double helix model of model driven experimentation for large-scale experiments.
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that Loop 1 is executed a sufficient number of times to the two series; on the contrary, results from small fo-

produce a well-tuned experiment that has a high prob- cused experiments embedded in an even (odd) AWE can

ability of generating useful data. Similarly, Loop 2 is affect the next odd (even) one. The two helices are
essential, if a sequence of experiments is planned. It coupled�hence the term double helix.
establishes the credibility of the model and allows the

consideration of more realistic contexts. The latter im-
4. CONCLUSIONproves the linkage between the experimental setup and

the operational environment, always a source of diffi-
Model Driven Experimentation, as it evolving, appearsculty in trying to extrapolate from laboratory findings
to be a very promising approach for designing experi-to operational environments.
ments involving human decision-making in a structured

environment. It also seems appropriate for facilitating
3. GENERALIZATION the design of series of large scale experiments.

One approach to increasing the credibility of the experi-

mental results is to employ a time-phased approach to

the conduct of the experiments. This may be considered

as an evolutionary experimental approach in which a set

of experiments is built on the results of the previous set.

As shown in Figure 4, the feedback Loop 3 does not go

back to the original experiment, but goes forward as an

input to the next set of experiments. While Loops 1 and

2 constitute a spiral development process, Loop 3 gen-
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